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Abstract. The possibilities for calculating the X-ray or neutron scattering potential across a thin film
from experimental specular reflectivity amplitude information alone and using full dynamical theory, i.e.,
phaseless inverse scattering, are investigated and compared with traditional fitting methods. The feasibility
of the method is demonstrated by one trivial and two non-trivial experimental examples. The usefulness,
but also the limitations are outlined by the experiments and by numerical examples. The data reduction
is treated in some detail and, in particular, a new method is proposed for deconvolving the experimental
data from the instrumental smearing function.

PACS. 61.10.Kw X-ray reflectometry (surfaces, interfaces, films) – 68.35.Ct Interface structure
and roughness – 68.55.Jk Structure and morphology; thickness

1 Introduction

The determination by specular neutron or X-ray reflec-
tivity of the scattering potential (SP) V (z) perpendicu-
lar to an interface has become a routine tool in surface
and thin film science. Reflectivity data have been tradi-
tionally analyzed by trial-and-error and non-linear least
squares fitting methods using Parrat’s recursive reflectiv-
ity calculation method [1] to arrive at the final SP per-
pendicular to the surface. The dependency of these fitting
methods on an a priori postulated model finds its origin
in the fact that normally only the amplitudes of the re-
flected waves can be measured and not their phases. This
is called the phase problem and has its equivalence in, e.g.,
crystallography.

A second problem is that the SP is quite difficult to
calculate from the complex reflection coefficient even if
the phases were known, because of the dynamical nature
of the reflectivity scattering process in the vicinity of the
critical angle for total reflection. This is called the inverse
scattering (IS) problem and does not have an analog in
crystallography. In crystallography the Born approxima-
tion for scattering can be assumed to be valid so that the
scattering density can be calculated by an inverse Fourier
Transform from the complex scattering data. Both the
phase problem and the IS problem are naturally circum-
vented if an a priori model is assumed that is adjusted
by hand and/or by least-squares to get agreement with
the experimental data. These fitting methods are, how-
ever, quite difficult to employ in the case of non-trivial
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SP’s, and need not give a unique solution. Hence the need
arises for a more model-independent determination of the
SP by specular reflectivity.

Several model-independent approaches have been pro-
posed during the last years that aim to go beyond the
Born approximation for specular reflectivity. They can be
classified according to whether they are based on a fit-
ting procedure or on an ab initio calculation using in-
verse scattering theory. Fitting procedures based on the
distorted wave born approximation (DWBA) have been
proposed by Sanyal et al. [2] and those based on an expan-
sion of the SP in a basic set of functions by Pedersen and
Hamley [3] and Berk and Majkrzak [4]. They have in com-
mon that the resulting SP need not be unique.

On the contrary, inverse scattering methods claim to
solve the IS problem and to yield a unique SP at the
condition that the phase is known by some means. The
first proposals to measure indirectly the phase by per-
forming one or two additional measurements on systems
with magnetic reference layers were from de Haan et al. [5]
and Majkrzak and Berk [5,6]. They have only recently
found application [7,8]. Meanwhile, other methods have
been proposed using non-magnetic reference layers that
can also be employed in the X-ray case by either varying
the wavelength across the absorption edge of one of the
constituting elements [9,10] or by contrast variation using
one or two different reference layers [11–13]. The contrast
variation method for non-magnetic reference layers have
not yet found applications.

Methods that do not use additional measurements
and/or reference layers have been proposed by Klibanov
and Sacks [14] and by Clinton [15]. These methods are
called phaseless inverse scattering (PIS) methods, since
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they calculate the SP from the experimental data without
explicit phase information from elsewhere. Phase informa-
tion is assumed to be implicitly present in the amplitude
information and is extracted by mathematical means. The
advantage of PIS methods is, of course, that the system
to be studied is not disturbed by the presence of a refer-
ence layer and that the data collection can be performed,
in general, in any laboratory equipped with a commer-
cial or home-built diffractometer. Another advantage of
PIS is that the mathematical data treatment is less labo-
rious than that for two- or three measurement methods.
The drawback is that some physical pre-information is re-
quired to judge the uniqueness of the result. It should be
noted, however, that the methods proposed to determine
the phase uniquely quite often give two alternative solu-
tions as well, from which one has to be rejected on physical
grounds as well [8,11,13]. A second disadvantage is that
not every system is suitable for SP determination by PIS.

Although an experimental determination of the phase
of the reflected waves by one of the methods mentioned
before is preferable from a theoretical point of view, it
is anyhow of interest to see in what circumstances PIS
methods could be used to extract meaningful information
from a reflectivity experiment. Clinton [15] envisioned PIS
methods to play a complementary role to traditional mod-
eling techniques, but to date it has not been shown how
this is realized in practice.

The goal of this paper is to show in which experimen-
tal circumstances and for which kind of systems PIS might
be useful for SP determination by specular reflectivity and
to explore the experimental factors that influence the data
reduction. In addition a new method is proposed for de-
convolving the experimental data from the instrumental
smearing function. This deconvolution method could not
only be useful for phaseless inverse scattering but also
for SP determination by more general inverse scattering
methods using reference layers.

2 Data reduction and analysis

The PIS data reduction procedure is outlined in Figure 1
and is contrasted with the fitting methods that are either
model-dependent or model-independent. The first step in-
volves the reduction of the raw data I(k), viz., scaling,
subtracting noise and eventual diffuse scattering, to get
the (convolved) square of the reflection coefficient rCV(k).
The intensity reduction due to geometric effects for angles
below the critical angle [16] is simply ignored and all in-
tensity data for angles below the angle at the plateau of
total reflection where the intensity is maximum is set to
1.00. All subsequent data are scaled accordingly. No data
smoothing is performed.

The second step involves the deconvolution of the ex-
perimental data rCV. Deconvolution is not necessary if a
fitting approach is used, whether it is model-dependent
based on Parrat’s recursive method or model-independent
using a DWBA-approach or spline-functions, since then
the reflectivity data are generated from the model and

subsequently convolved with the instrumental profile func-
tion IPF . The convolved data are compared with the ex-
perimental data, and the starting set of parameters is ad-
justed by least-squares analysis (Fig. 1b). If, however, an
ab initio approach is sought using IS methods, deconvo-
lution of the experimental data becomes indispensable if
details in the reflectivity are smeared out by the IPF .
Since the deconvolution of experimental reflectivity data
is not well documented in literature, a new method is here
proposed that appears to work well.

The instrumental profile function (IPF ), which smears
the experimental data, is determined by factors like slit
width and height, beam divergence, wavelength spread
and the presence of optical elements like monochroma-
tors and analyzers. The smearing operation is normally
represented by the convolution integral:

rCV(k) = P [rDC(k)] =

∞∫
−∞

rDC(k − κ)IPF (κ)dκ. (1)

Here P is the convolution operator and rDC(k) is the non-
convolved square of the reflection coefficient: rDC(k) =
|R(k)|2. k (and κ) is the z-component of the incident wave
vector: k = 2πsinθ/λ with θ the angle between incident
beam and the surface and λ the wavelength. It is noted
that the momentum transfer q of the scattering process is
equal to q = 2k. Appropriate treatments of instrumental
profile functions for X-ray [16] and neutron reflectome-
ters [17] can be found in the literature. Most often, a
Gaussian smearing function is used.

Although the convolution operator P itself is straight-
forward to apply, the inverse operator P−1 is usu-
ally highly ill-conditioned [18]. Deconvolution techniques,
which have a large tradition in especially astronomy, are
either based on regularisation techniques that try to sta-
bilize the inversion of large matrices, or on iterative tech-
niques that convolve a test solution and compare it with
the experimental data, then improve the test solution etc.
For specular reflectivity data none of the existing methods
appeared to be satisfactory alone. Instead, a combination
of a technique based on zeroth-order Tikhonov regulari-
sation [18] (TR) and the original Lucy-Richardson algo-
rithm [19,20] (LR) gave the best results.

First, two solutions rTR and rLR are calculated, based
on TR and LR, respectively. The best TR-solution is se-
lected by varying the regularisation parameter until a min-
imal figure of merit is found. The figure of merit is de-
fined by FOM = |

∑i=N/2
i=1 (rCV(i) − P [rDC(i)])2|, if N is

the number of data. The LR-iteration is stopped when
the relative change in the figure of merit is smaller than
10−4. The sum is over the first half of the data points,
because it was observed that the LR solution deteriorates
at the end of the interval with increasing number of it-
erations. On the other hand, the TR solution appears to
be very good in the second half of the interval, but not
very stable for angles close to the critical angle, where
the variation of the reflectivity is largest. There the calcu-
lated TR-solution rTR(i) quite often tends to get negative.
Therefore, an optimal deconvolved rDC(i) is selected out
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a) Model-independent calculation

I. scaling, noise subtraction

II. deconvolution Tikhonov,
Lucy-Richardson

III.  phase recovery logarithmic
dispersion
relation

IV. potential recovery layer-stripping

      b) Model-(in)dependent fitting

     calculation

   convolution

adjustment by
least-squares

deconvolved data
|R(k)|2=rDC(k)
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potential V(z)
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rCV(k)cal

Fig. 1. Flow diagrams showing reflectivity data treatment for (a) PIS and (b) least-squares modeling.

of the TR and LR solutions rTR(i) and rLR(i), based on
criteria like positiveness, smoothness and best individual
figure of merit IFOM(i) = (r(i)−P [r(i)])2. A solution is
rejected when it is negative or when subsequent solutions
r(i) and r(i + 1) differ by more than a factor 10. In the
considered cases, subsequent data values of the theoretical
non-convolved reflectivity curves never differed more than
a factor 10 using reasonable (experimental) step sizes.
These two criteria, the smoothness and positivity crite-
rion were found to apply only to the TR solution. Next,
the values of IFOMTR(i) and IFOMLR(i) are compared.
If IFOMTR(i) is better, the TR-solution rTR is selected; if
IFOMLR(i) is better, the LR-solution rLR is taken as the
deconvolved signal rDC. Finally, the complete deconvolved
solution is scanned to see if there are no single or double
TR-solution values within an otherwise continuous range
of LR-solutions. This criterion is again based on smooth-
ness, and has to be applied because of the non-uniqueness
of the deconvolution operation P−1. IFOMTR(i) might
be smaller than IFOMLR(i) because of a second solu-
tion which happens to be better than the true solution,
but this solution appears not to be smooth with the sur-
rounding solutions. Such false TR-solutions are therefore
interchanged by LR-solutions.

This deconvolution algorithm was tested on simulated
data for two realistic cases, the first one being a 47 nm
tungsten film on a Si substrate capped by a 5 nm layer
Si layer with a 2 nm thick oxidized surface layer, the sec-
ond one being a W/Si/W/SiO2 multilayer with 13.0, 7.0,

13.5, and 9.0 nm thick individual layers, respectively, on a
Si substrate, with 0.7, 0.7, 0.5, 0.5, and 0.5 nm as rough-
ness parameters for the respective interfaces. It is noted
that in all calculations and figures in this paper the scat-
tering potential V (z) is used, rather than the scattering
length density ρ(z). The relation between V (z) and ρ(z)
is simple: V (z) = 4πρ(z). A Gaussian smearing function
was used [16]:

IPF (κ) = exp(−κ2/2σ2) (2)

with σ equal to the half width at half maximum of the
main beam. The algorithm was tested by going through
the complete IS calculation (Fig. 1a).

Figure 2a shows the (neutron) reflectivity rCV of the
tungsten layer after convolving it with the IPF (upper
curve), the original non-convolved reflectivity rTH (middle
curve), and the reconstructed deconvolved reflectivity rDC

(lower curve). The inset in the right upper corner shows
that for large k-values the reconstructed curve is indistin-
guishable from the original curve. For k-values around the
critical edge (left lower corner inset) some deviations are
visible. Figure 2b shows the reconstructed (neutron) SP’s
from these three reflectivity curves, using the PIS method.
It is seen that deconvolution is indispensable, since the
reconstructed potential VCV from the convolved data rCV

is heavily affected by the instrumental smearing. The re-
constructed potential VDC from the deconvolved data rDC

is quite close to the theoretical reconstructed potential,



758 The European Physical Journal B

0.0 0.4 0.8 1.2 1.610
-13

10
-10

10
-7

10
-4

10
-1

10
2

r
DC

r
TH

r
CV

 

 

R
ef

le
ct

iv
ity

k (nm
-1

)

1.2 1.3 1.4 1.5 1.6 1.7

10
-10

10
-9

10
-8

10
-7

 rTH

 rDC

 rCV

 

 

0.05 0.10 0.15 0.20 0.25
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

(a)

 rTH

 rDC

 rCV
 

 

 

0 10 20 30 40 50 60 70
1

2

3

4

(b)

 

 

z (nm)

S
ca

tte
rin

g 
po

te
nt

ia
l (

10
-3
nm

-2
)

 VTH

 VDC

 VCV

Fig. 2. (a) Calculated neutron reflectivity for a 47 nm thick
tungsten layer on a silicon substrate, capped by a 5 nm thick
Si layer with a 2 nm oxidized surface layer. Upper curve: con-
volved data; middle curve: theoretical unconvolved data; lower
curve: deconvolved data. The two insets show some parts of
the data interval in more detail. (b) Reconstruction of the SP
using the data of (a).

except for a small deviation around the substrate/film in-
terface. This is related to the not so perfect deconvolution
around the critical edge. It is noted that the singularities
of the thin film perpendicular structure, viz., the jumps in
the scattering potential, remain visible even after severe
smearing. The thickness of the tungsten film can be deter-
mined with precision. This appears to be a generality of
PIS methods for quite general SP’s: the reflection ampli-
tudes alone (without phases) contain sufficiently enough
information to determine the location and amplitude of
singularities in the SP [21]. This was strictly speaking only
proved for unconvolved signals, but seems to apply as well
to the convolved signal.

Figures 3a and 3b show the reflectivity curves and
the reconstructed scattering potentials for the multilayer.
Here, instrumental smearing is less severe, because of the
thinner layers compared to those of the tungsten exam-
ple. The reconstructed potential using the deconvolved
data rDC coincides nearly completely with VTH, also for
z-values within the substrate, since deconvolution is now
fairly good in the neighborhood of the critical edge. The
reconstruction itself, even the theoretical one, VTH, is
on the other hand less good than that of the tungsten
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Fig. 3. (a) Calculated neutron reflectivity for a W/Si/W/SiO2

multilayer on a silicon substrate. Upper curve: convolved data;
middle curve: theoretical unconvolved data; lower curve: de-
convolved data. The inset show a part of the data interval in
more detail. (b) Reconstruction of the SP using the data of (a).

example, indicating that the maximum value kmax have
been taken too small.

The third step in the data analysis (Fig. 1a) concerns
the determination of the phase arg(R(k)), either by means
of independent data from a second and sometimes from a
third measurement, or, in certain cases, mathematically
by means of a logarithmic dispersion relation. Here the
form proposed by Klibanov and Sacks [14] was used:

arg(R(k)) = −π +
1

2π

1∫
−1

log
[

r(k)r(1/κ)
r(k + κ)r(k + 1/κ)

]
dκ
κ
·

(3)

The data r are the experimental reflectivity data points ri
(if necessary desmeared) interpolated by cubic B-splines
to get a quasi-continuous reflectivity function. This inter-
polation is necessary because the integrand of the integral
in equation (3) requires data at points ki that have not
been measured. The interpolation does not give problems
at the condition that the step ∆ki is not too large. This
means in practice that in order to correctly describe an
interference fringe ∆ki should be taken to be about one
tenth of the period of the fringe. It is also advisable to
take a small step in the vicinity of the critical edge, since
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there the reflectivity changes drastically. The singularity
of the integrand of equation (3) at κ = 0 is dealt with in
the way described by Klibanov and Sacks [14]. Data re-
quired beyond the experimental cut-off are estimated by
the asymptotic form r(k) ∼ (V0/k

2)2, in which the con-
stant V0 itself is estimated from the last part of the ex-
perimental data interval. The exact value of V0 is not very
critical, at the condition that the data have been measured
sufficiently far. The integration itself is performed by the
extended trapezoidal rule. More sophisticated quadrature
algorithms do not improve the accuracy of the final result.
Results obtained by using equation (3) will be discussed
further in the following section.

Finally, the SP can be calculated using the values of
|R(k)| and arg(R(k)). Different methods have been pro-
posed [22–24], all of which are inherently instable for
“large potentials” [25]. In this paper Sack’s layer-stripping
method was used, which is believed to be more stable than
the other methods [23]. The instability of this last inver-
sion step can be considered to be the most serious ob-
stacle for the use of IS methods in general, since it im-
plies that SP’s of thin films larger than about 20 nm for
X-rays or about 100 nm for neutrons, cannot be deter-
mined anymore, if silicon is assumed to be the substrate.
These numbers depend of course on the exact scattering
power of the elements that constitute the film. Some work
is being performed, however, to find alternative ways to
analyze the inherent instability of inverse scattering [26]
based on Lyapunov exponents. This may yield new ways
to shift the outset of instability to larger potentials.

3 Phaseless inverse scattering

The phase obtained by equation (3) is unique if two condi-
tions are fulfilled. The first one supposes that the potential
should have a leading jump at z = 0. If not, and in prac-
tical applications this is never the case due to the finite
roughness of the air/film interface, the potential tends to
‘drift away’ from the z = 0 position. This translational
invariance is not a serious problem, since the potential
can easily be shifted back to the zero position, eventually
by applying in a second run an appropriate phase change
of the form exp(−ikl) to the obtained complex reflection
coefficient, if l is the required shift of the potential. The
second condition to obtain a unique phase is that the (an-
alytically extended) complex reflection coefficient should
have no zero’s in the upper half plane of the complex plane
(UHP). Clinton derived several relations, using the Born
approximation, for multilayers in terms of the SP’s of the
constituting layers that yield those systems with a reflec-
tion coefficient without zero’s in the UHP, and that give
thus a unique phase using equation (3) [15]. For real sys-
tems, however, a dynamical calculation has to be used,
and then it appears that the thickness of the constituting
layers and the roughness of the interfaces are intervening
parameters that determine the number of zero’s.

A program was developed, using the downhill simplex
method, to determine the number and position of the zeros
of the complex reflection coefficient in the UHP calculated
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Fig. 4. (a) Reconstructions (dashed curves) of typical X-ray
SP’s (full curves). The numbers shown are the values for the
surface and interfacial roughness, respectively. (b) shows the
relative percentual error of the reconstruction as a function
of the interfacial roughness (x-axis) and the surface roughness
(y-axis).

by Parrat’s recursive algorithm [1] for many different mul-
tilayer systems in the X-ray and neutron SP range. Then
the SP was reconstructed using the procedures of Fig-
ure 1a to see the effects of the positions (kx, iky) of the
eventual zeros. The following trends were observed.

Firstly it appeared that the influence of the zero’s
introduced by the presence of interfacial roughness is
most often negligible, if their values are not higher than
about 1.0 nm. The zero’s are normally located not too
far from the real axis at values kx > 1.0 nm−1 (and at
kx < −1.0 nm−1), well beyond the critical edge kc. In fact,
the presence of moderate interface roughness quite often
helps to improve the characteristics of the potential recon-
struction of for example a thin film system, compared to
that of the hypothetical system without interfacial rough-
ness. The latter systems show quite often termination rip-
ples around the sharp edges of the potential jumps due
to finite wave transfer. This is naturally absent for multi-
layer systems with moderate interfacial roughness. Fig-
ure 4a shows several SP reconstructions as a function of
the interfacial roughness for a thin film on a substrate
system. Figure 4b shows the relative percentual error of
the reconstructions of 4a (and others) as a function of the
surface and the interfacial roughness. The reconstruction
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gets worse if either the two roughness parameters are very
different and/or one of the values is larger than 1.0 nm.

The second observation is that Clinton’s relation for a
single layer on a substrate is in first approximation cor-
rect, but need to be adapted for the influence of the film
thickness. It was found that for a single film with con-
stant SP Vf on a substrate with constant SP Vs there are
no zero’s in the UHP if Vf > Vs, regardless the thick-
ness d of the film. This first relation is in accord with
Clinton’s findings. If however (∆Vf/∆Vs) > 1 where ∆Vf

and ∆Vs are the heights of the two steps in V , respec-
tively, and if Vf < Vs, there is a critical thickness dcrit

beyond which phaseless inversion is no longer possible:
d > dcrit ≈

√
1/Vs(∆Vf/∆Vs). This phenomenological for-

mula does not give exactly the critical thickness beyond
which zero’s appear in the UHP. For SP’s in the X-ray
range it is quite accurate, but for SP in the neutron range
the formula tends to overestimate the real critical thick-
ness. Tests with d-values below the phenomenological crit-
ical thickness, but above the real critical thickness, thus
for systems with (usually) two zero’s in the UHP, showed
that phaseless inversion yields a completely satisfactory
result. This is because the zeros are located very close
to the real axis. The zeros thus have a very small imagi-
nary part, rendering the phase correction important only
for a few data points. The phenomenological formula thus
accurately estimates the possible systems for phaseless in-
version for either neutrons or X-rays. It is noted that the
critical thickness is generally larger for neutrons than for
X-rays for the same chemical system.

Clinton also derived a relation for multilayers: the
largest jump in the scattering potential must be larger
than the sum of the absolute values of all other jumps
in order to be able to apply phaseless inverse scattering
methods. Extensive simulations using the full dynamical
theory have shown that this statement is remarkably cor-
rect, except for the important addition already found for
the single-layer system. This means in concreto that the
SP of a single layer within the multi-layer system must
not be less than one half of the SP of all other layers. If
it is larger than one half, but smaller than the SP of an-
other layer, then its thickness must not exceed the critical
thickness given by the phenomenological formula.

4 Experimental feasibility

It is shown now how PIS methods can be used, in conjunc-
tion with traditional fitting methods, to determine a non-
trivial SP compatible with the experimental data. Three
cases will be presented. The first one could be considered
trivial, because the SP can be found with ease using tra-
ditional fitting methods. The two other examples are less
evident to analyze using Parrat’s recursive relations.

The first thin film was deposited by plasma en-
hanced chemical vapor deposition (PECVD) from di-
ethoxydimethylsilane (DEDMS), resulting in an amor-
phous layer with SiOxCyHz composition [27]. The second
film was a nominal 10 nm thick carbon layer obtained by
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cathodic sputtering, and the third one an approximately
14 nm thick C4F8 layer also obtained by PECVD from
a 50%/50% C4F8/Ar plasma. All three thin films were
deposited on clean (001) Si wafer surfaces.

X-ray reflectivity data were recorded using a com-
mercial BRUKER D5000 diffractometer equipped with a
reflectivity stage and a secondary graphite monochroma-
tor. The data were collected using Cu-L3,2 X-rays (λ =
0.154051 nm and λ = 0.15433 nm, respectively) up to
k = 1.77 nm−1, k = 1.22 nm−1 and k = 2.30 nm−1, for
the DEDMS, carbon and the C4F8 film, respectively. Step
sizes and counting times were variable, according to the
intensity in a certain interval. The reflectivity intensity
was recorded over 6 to 7 decades. Deconvolution of the
data appeared not to be necessary, since the investigated
films are rather thin.

Figure 5 presents the experimental data from the
DEDMS-film along with the simulated data from a single-
layer model fit using Parrat’s recursive relations [1]. It is
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Fig. 7. Experimental X-ray reflectivity curve (full line, left
axis) of a thin carbon film on a Si substrate and the differ-
ence curves (right axis) of the one-layer (dashed) and the two-
layer (dotted) fit. The parameters of the one-layer model are
ρlayer1 = 0.0202 nm−2, ρsubstrate = 0.0248 nm−2, dlayer1 =
11.2 nm, σair/layer1 = 1.37 nm, σlayer1/substrate = 0.76 nm. The
parameters of the two-layer model are ρlayer1 = 0.0229 nm−2,
ρlayer2 = 0.0169 nm−2 ρsubstrate = 0.0248 nm−2, dlayer1 =
7.7 nm, dlayer2 = 3.5 nm, σair/layer1 = 1.74 nm, σlayer1/layer2 =
1.20 nm, σlayer1/substrate = 0.88 nm.

seen that the agreement between the curves is excellent,
the reliability index being R = 0.0078. To prove that the
ab initio determination of this trivial SP is also possi-
ble, the PIS calculations (Fig. 1a) using the experimen-
tal data were carried out. Figure 6 shows a good concor-
dance between the PIS SP and the one-layer model from
Parrat’s fit. This trivial example demonstrates that PIS
can be readily applied using experimental data collected
with laboratory equipment. It appears that neither exper-
imental noise, nor absorption for such a light-element sys-
tem distorts the extracted PS. It is noted that the IS the-
ory applied in this paper is intended for systems without
absorption. This condition is normally fulfilled for neutron
SP’s, but X-ray SP’s have normally an imaginary part.
Finally it is verified experimentally that moderate inter-
facial roughness can be very well modeled.

The second example is not so trivial, in the sense that
fitting using Parrat’s recursive relations is not straight-
forward. The experimental reflectivity curve of the car-
bon film is shown in Figure 7 (full line). First a fit was
tried using Parrat’s recursive relations on the hypothesis
that the layer is homogeneous (dashed line). The differ-
ence data log(r(k)exp)− log(r(k)cal) (lower part of Fig. 7,
dashed line), on the same scale as the difference data in
Figure 5 give the impression that the fit is only on the
average correct. Taking into account the mean SP value
resulting from the single-layer model fit, it could be an-
ticipated that PIS methods could be useful to detect the
deviations from the mean. Hence the SP was calculated
following the PIS scheme of Figure 1a. Figure 8a shows
the resulting SP as a dotted line. An density depleted re-
gion at the substrate/film interface results. A second fit
using Parrat’s scheme was tried with a two-layer model,
that parametrized approximately the dotted curve of
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Fig. 8. (a) SP of carbon film on a Si substrate determined
by fitting using Parrat’s scheme (full line), and by the PIS-
method (dotted line). (b) SP of carbon film determined by
fitting using Parrat’s scheme (full line), by the PIS-method
using the complex reflection coefficient from Parrat’s scheme
at the experimental resolution (dashed line) and at a lower
resolution k = 0.400 nm−1 (dotted line).

Figure 8a. The resulting difference data are given as the
dotted line in the lower part part of Figure 7 at the same
scale as the difference data of the one-layer model. The
overall reliability indices are R = 0.0659 and R = 0.0133
for the one-layer model and two-layer model, respectively.
The full curve in Figure 8a represents the two-layer model.

Since it is not known whether the real unknown com-
plex reflection coefficient has zero’s in the UHP and –
more important – what their eventual influence is on the
PIS determined SP, some further calculations were done.
The UHP zero’s of the complex reflection coefficient corre-
sponding to the final two-layer model SP were calculated.
There are indeed zero’s in the UHP that find their origin
in the rather large interfacial roughness. The first zero has
a quite low real part (Re(k0), Im(k0)) = (0.44, 0.011). The
critical kc vector of the substrate is kc = 0.158 nm−1. If
in turn this complex reflection coefficient is used for a PIS
calculation, thus with neglecting the zero’s, the dashed
curve in Figure 8b results. The full curve represents again
the two-layer SP that comes out of Parrat’s fit; the dotted
curve is the PIS SP calculated using the data at a much
lower k-cutoff, viz., at k = 0.400 nm−1, thus just below
the first zero in the UHP. It is noted that the dashed curve
of Figure 8b is quite close to the dotted curve of Figure 8a
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and that the general features of the curve are similar to
that of the full curve. In other words: the PIS SP repre-
sents the zero-order approximation to the real SP.

By calculating the PIS SP an idea has been obtained
how the SP could deviate from the single-layer model.
Even the low-resolution data show up the reduced density
layer at the substrate/film interface. It cannot be rigor-
ously proved that the obtained SP is unique. That is only
possible by an experimental determination of the phase.
The full and dashed profile in Figure 8b give the same re-
flectivity amplitude, because the presence of UHP-zero’s
does not affect the amplitude. The final SP is anyhow
better compatible with the experimental data than the
original one-layer model, a result which should have been
obtained with less ease by trial-and-error and/or least-
squares fitting.

The third example, the nominally 14 nm thick C4F8

film, shows less deviations from the single layer model.
Figure 9 (full curve) gives the experimental data along
with the reflectivity resulting from the fit using a single-
layer model (dashed curve). One could content oneself
with this model, but one could also look for the reasons
of the significant deviations between the two curves. It is
noted that these deviations are truly significant when the
experimental errors from counting statistics are taken into
account. This error is maximum, about 4.5%, at the end of
the experimental curve in Figure 9. Since the parameters
of the single-layer model are in agreement with a SP that
could be extracted by PIS, such a calculation was tried,
resulting in the full curve of Figure 10. The dashed line in
the same figure represents the single-layer model. It is seen
that the PIS SP exhibits a slight, increasing density across
the film. This density gradient is quite difficult to model
with a limited number of layers in Parrat’s recursive cal-
culation method. Therefore Sanyal’s model-independent
fitting method was tried [2], taking the single-layer model
(without roughness) as the unperturbed SP in the dis-
torted wave born approximation. The thin layer was taken
to be 16 nm and divided into 24 slices of equal thickness.
The 24 points from the fit are very close to the (full) curve
from the PIS calculation (Fig. 10). The reflectivity using
this 24-layer model is in excellent agreement with the ex-
perimental data (Fig. 9, dotted curves).

Several comments can be made in comparing the
ab initio PIS approach and Sanyal’s model-independent
fitting approach. Sanyal’s method was found to be quite
sensitive on the thickness of the thin layer to be modeled.
Moreover, it is a pertubation method for which an unper-
turbed system has to be presumed that originates from
a model-dependent fitting method. PIS is, on the other
hand, really model-independent and uses no fitting what-
soever. Sanyal’s method, however, does not suffer from the
instability problems for larger potentials. In addition, it is
not limited to potentials that fulfill the conditions of the
phenomenological formula. It is seen that the PIS SP tends
to level off for large z-values. This is a sign of the outset of
instability. Both methods are in conclusion very sensitive
to small deviations from an otherwise constant SP.
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Fig. 9. Experimental reflectivity (full curve), together with
their simulations calculated from the model resulting from
Sanyal’s fitting method (dotted) and from the one-layer model
(dashed). The corresponding difference curves are shown in the
lower part of the figure.
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Fig. 10. SP of C4F8 film on a Si substrate determined by PIS
(full line), by Sanyal’s method (squares) and by classical fitting
using Parrat’s recursive relations (dashed line).

5 Concluding remarks

A new method to determine the scattering potential from
specular reflectivity data using full dynamical theory, viz.,
phaseless inverse scattering, has been tested on its exper-
imental feasibility. The method has been previously de-
scribed in literature, but has never been applied using
experimental data. The phase extraction and the layer-
stripping algorithms are stable against experimental noise,
but fail for large potentials, even if the data are noise-free.
It is shown for which systems PIS methods can extract a
meaningful SP. When used with caution, PIS could pro-
vide valuable information complementary to traditional
fitting methods, like those based on Parrat’s recursive
relations. PIS can detect deviations from multilayer-like
models which are hard to find using the traditional fit-
ting methods. PIS yields about the same information as
Sanyal’s method, but is intrinsically model-independent.
However, the method gives, like Sanyal’s and Parrat’s
method, rarely a unique SP, because of the lack of some
fundamental a priori knowledge. Instead, more general IS
methods have to be used to obtain a real unique SP, which
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however require more laborious experiments that can quite
often only be performed using a synchrotron or neutron
source. Therefore, PIS could play an important role at a
laboratory scale, when the possibility does not exist, for
whatever reason, to perform more than one measurement
or to change the system to be studied by the deposition
of one or more reference layers.

S. Roualdes, D. Cot and H. Lecacheux (LMPM-Montpellier)
are thanked for providing the DEDMS, carbon and C4F8 de-
posits, respectively.
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